输入问题...
线性代数 示例
[110101101210210]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣110101101210210⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
解题步骤 1
解题步骤 1.1
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
[1101-10-11-0101210210]
解题步骤 1.2
化简 R2。
[1100-11101210210]
[1100-11101210210]
解题步骤 2
解题步骤 2.1
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
[1100-111-10-11-0210210]
解题步骤 2.2
化简 R3。
[1100-110-11210210]
[1100-110-11210210]
解题步骤 3
解题步骤 3.1
Perform the row operation R4=R4-2R1 to make the entry at 4,1 a 0.
[1100-110-112-2⋅11-2⋅10-2⋅0210]
解题步骤 3.2
化简 R4。
[1100-110-110-10210]
[1100-110-110-10210]
解题步骤 4
解题步骤 4.1
Perform the row operation R5=R5-2R1 to make the entry at 5,1 a 0.
[1100-110-110-102-2⋅11-2⋅10-2⋅0]
解题步骤 4.2
化简 R5。
[1100-110-110-100-10]
[1100-110-110-100-10]
解题步骤 5
解题步骤 5.1
Multiply each element of R2 by -1 to make the entry at 2,2 a 1.
[110-0--1-1⋅10-110-100-10]
解题步骤 5.2
化简 R2。
[11001-10-110-100-10]
[11001-10-110-100-10]
解题步骤 6
解题步骤 6.1
Perform the row operation R3=R3+R2 to make the entry at 3,2 a 0.
[11001-10+0-1+1⋅11-10-100-10]
解题步骤 6.2
化简 R3。
[11001-10000-100-10]
[11001-10000-100-10]
解题步骤 7
解题步骤 7.1
Perform the row operation R4=R4+R2 to make the entry at 4,2 a 0.
[11001-10000+0-1+1⋅10-10-10]
解题步骤 7.2
化简 R4。
[11001-100000-10-10]
[11001-100000-10-10]
解题步骤 8
解题步骤 8.1
Perform the row operation R5=R5+R2 to make the entry at 5,2 a 0.
[11001-100000-10+0-1+1⋅10-1]
解题步骤 8.2
化简 R5。
[11001-100000-100-1]
[11001-100000-100-1]
解题步骤 9
Swap R4 with R3 to put a nonzero entry at 3,3.
[11001-100-100000-1]
解题步骤 10
解题步骤 10.1
Multiply each element of R3 by -1 to make the entry at 3,3 a 1.
[11001-1-0-0--100000-1]
解题步骤 10.2
化简 R3。
[11001-100100000-1]
[11001-100100000-1]
解题步骤 11
解题步骤 11.1
Perform the row operation R5=R5+R3 to make the entry at 5,3 a 0.
[11001-10010000+00+0-1+1⋅1]
解题步骤 11.2
化简 R5。
[11001-1001000000]
[11001-1001000000]
解题步骤 12
解题步骤 12.1
Perform the row operation R2=R2+R3 to make the entry at 2,3 a 0.
[1100+01+0-1+1⋅1001000000]
解题步骤 12.2
化简 R2。
[110010001000000]
[110010001000000]
解题步骤 13
解题步骤 13.1
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
[1-01-10-0010001000000]
解题步骤 13.2
化简 R1。
[100010001000000]
[100010001000000]